Course Type	Course Code	Name of the Course		Т	P	Credits	
DP	DP NCSC517 Deep Learning Lab		0	0	3	1.5	

Course Objective

This course is designed to help the students in developing skills for building deep network models and also to give them practical exposure to the state-of-the-art deep learning techniques for solving variants of real-world problems. The students are expected to use Python for the implementation purpose.

Learning Outcomes

Upon successful completion of this practical course, the students would be able to:

- 1. learn the key principles of deep learning;
- 2. identify the deep learning algorithms for different types of learning tasks in various domains;
- 3. implement deep learning algorithms and solve real-world problems.

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome		
1	Introductory concepts of Python programming to represent mathematical building blocks of deep leaning (vector, matrix, tensor, etc.), and understanding numerical computations on these	3	The students would be practically exposed to the mathematical building blocks of deep learning		
2	Understanding basic Machine Learning concepts: Handling dataset, model training/testing/validation, optimization, evaluation, plot generation	3	The students would acquire basic and practical knowledge of machine learning from data		
3	Implementation of Linear Regression and Logistic Regression Models	3	The students would gain experience in developing regression and classification models from scratch		
4	Building neural network (NN) using Keras/ Tensorflow /PyTorch, Training NN, Exploring NN with respect to binary and multiclass classification tasks	6	The students would acquire practical experience in building as well as effectively training neural network		
5	Implementing Convolutional Neural Networks (CNNs) using Tensorflow and PyTorch	3	The students would learn to build and trai convolutional neural networks		
6	Convolutional Neural Network (CNN) Interpretation/Visualization	3	This unit would further help clarify the working principles of CNN		
7	Exploring RCNN and YOLO for Object Detection Task	3	The students would acquire practical experience in using deep learning models for computer vision tasks		
8	Recurrent Neural Network (RNN) using Tensorflow/Keras	3	The students would learn to build and trai recurrent neural networks to learn from sequential data		
9	Implementation of Sequence-to-Sequence Learning	3	The students would gain practical experience in using RNN for NLP task		
10	Exploring unsupervised, generative deep learning models (Implementing Autoencoder and its variants using Keras,	6	The students would learn to implement and use unsupervised, generative deep learning		

	Generative Adversarial Network (GAN) implementation using Tensorflow, etc.)		models
11	Implementing GNN using PyTorch Geometric	3	The students would be exposed to deep learning from graph structured data
12	Examination	3	
	Total		

Text Books:

- Deep Learning, Ian Goodfellow and YoshuaBengio and Aaron Courville, MIT Press, 2016.
- Deep Learning with Python by Francois Chollet, Manning Publications (2nd Edition)

Reference Books:

- Neural Networks for Pattern Recognition Christopher Bishop Clarendon Press 1st Edition 1996
- Neural Networks and Learning Machines Simon Haykin, Pearson Education; 3rd Edition 2016
- Deep Learning with PyTorch by Thomas Viehmann et al., Manning Publications